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the presence of a magnetic field

(Key words: MHD /thermal instability/heterogeneous fluid / free boundaries)

R.S. SENGAR and INDU GUPTA

Department of Mathematics, University of Allahabad, Allahabad 211002

Abstract

The thermal instability of an electrically conducting, viscous, incompressible and heterogeneous fluid layer
with free boundaries in the presence of a transverse magnetic field under Boussinesqapproximation has
been studied. A discussion of the existence of the marginal states, over stability and the validity of the
principle of the exchange of stabilities,has been made; and the frequency of oscillations and the Rayleigh
number have been determined as function of the magnetic field and the densitydistribution, which give the
effects of the magnetic field of the heterogeneity on the onset of instability in various cases of interest.
Further, the problem has been solvedby using variational principle and the effects of various parameters
have been discussed through numerical computations in the case when the density varies exponentially.

Introduction

The magnetohydrodynamical equations of a conducting fluid allow some patterns of flow which can be
realized only for certain range of values of the parameters characterizing them due to their inherent
instability to sustain themselves against small perturbations. The problem of onset of instability in a
horizontal fluid layer, heated from below and first discussed by Benard!in 1900, gives somestriking features
of instability and is known as Benard problem.

Rayleigh? laid down the theoretical foundations for the study of the thermal Instability of such fluid layer
and showed that the Rayleigh numbers R= g o 3 d*/ KvDecides the stability of the configuration, where g, a,
B,K v andd acceleration due to gravity, the coefficient of the volume expansion, the adverse temperature
gradient, the thermal diffusivity, the kinematic viscosity and the thickness of the Medium, respectively. He
showed that the instability sets in when R exceeds certain Critical value Rand that when R just exceedsk,
stationary pattern of motioncome to prevail. The theory was further developed by Jeffreys3, Low*, Pellew
and Southwell5 and several others. Later on, the stability of the layer of viscous fluid of Variable density was
discussed by Hide6, Chandrasekhar7, Drazin8 and others.

The inhibiting effect of the magnetic field on the stability of a homogeneous fluid layer heated from below
has been discussed by Thompson9, chandrasekhar1l0and Nakagawal1l, Chandrrasekhar10, in particular, has
analyzed the thermal instabilityof a homogeneous fluid layer in the presence of a magnetic field, in detail.

As in many situations, the fluid may not be homogeneous and moreover,the Magnetic field may be prevalent,
it is interesting to study the effect of the magneticfield on the stability of heterogeneous fluid layer heated
from below.The problem may have applications in atmospheric studies, oceanography, geology, and various
other fields.
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In the present paper, we therefore, study the stability of a viscous, incomprehensible heterogeneous and
conducting fluid layer with free boundaries in the presence of a magnetic field acting in the transverse
direction. The density of the fluid is taken as a function of the vertical co-ordinate and the surroundings are
assumed to be non-conducting. We investigate the stability in the Bousssineq approximation and discuss the
existence of the marginal states and the over stability; and the validity of the principle of the exchange of
stabilities. We also obtain the frequency of oscillations and Rayleigh number in terms of the magnetic field,
density etc., and thus discuss the effect of the magnetic field and the heterogeneity on the stability of the
system. We further solve the problem by using the variational principle and discuss the effect of various
parameters through numerical computation when the density varies exponentially.

The Problem

Consider electrically conducting, viscous and incompressible fluid layers confined between two boundaries z
= Oand z= d and let the boundaries be free. Let the density of the fluid, apart from its variation due to the
temperature, be pof(z). Where po is the density a the lower boundaries (z = 0), so that f(0)=1 and f(z) is a
monotonic function of the vertical co-ordinate z.
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Let the lower and upper boundaries be maintained at uniform temperaturesTyandT; respectively with
To>T;. Further let a uniform magnetic field = (0, 0, H) Pervade the whole medium in the transverse
direction to the layer.

Basic equations: The basic equations governing our system are

2
pO[ S+ (V.7v] = grad [P+—] + 72V +=(H. PH (D
t 81-[ 41T
div V=0 (2)
a_T _ K 2 _ p . | [0]
o0 H(VP) T=p = V2 T - o= div Vo (3)
a
224 (V.7) p=0 (4)
div H=0 (5)
0H 8
Ezcurl(VxH)+nV H (6)
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p =po[£(Z) +a (To - T)] (7)

Where V,p,po,T,H denote velocity, hydrostatic pressure, density, temperature and applied magnetic field:
@,cydenote dissipation function, specific heat of the fluid at constant volume; and p, a and k denote the
coefficient of viscosity ,coefficient of Volume expansion and thermal conductivity of the medium,
respectively.

Let the initial state be characterized by

V=0 (8)
T=Ty-B;,B=(To—T1) /d 9
P=p+H> By =-[gpdz (10)
H= (0,0 H) (11)

where pois the density at the lower boundary z=0 and f is the adverse temperaturegradient.
Perturbation equations: Let the initial state be slightly perturbed such that

V->0+8V, 7T>7+0,P>P+ 8P

H—-H+ 6H, p —po[f(2)+ a(T, -T- B)] +s, (12)

Then, the liberalized perturbation equations for our system in the Boussinesqapproximations are

ou_ 0 2, 4 Hohy

pog. = at6P+ nvep+ 0, (13)
w_ 9 2y 490y

poat— aySP +ubVev +4u pe (14)

oh,
-2 - g(8p - ap0?) (15)

z

Ow_ 9 2+ B
poat_628p+ 1% W-l‘411

%g_ =0 (16)
P ‘;—hyuaa—hzeo 17)
Se—-powd (18)
g—f_gw= K Vg (19)

W = 2k H (20)
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ohy _ 2 v
=V hy+Ho(21)
Mz — nr2h,+ H2(22)
6t 0z

where, 8V =(p,v,w). g, 8P8H = (h,hyh,)and dprespectively denote small perturbations in velocity,
temperature, pressure, magnetic field and K=k, c,,the thermal diffusivity of the medium.

Analysis into normal modes:Now, we analyze an arbitrary disturbance into complete set of normal modes
and examine the stability of each of these modes, separately. For the present problem, the analysis can be
made in terms of two-dimensional periodic waves of assigned wave numbers. Hence, we assume that all the
perturbations have the space-time dependence as

F(z) exp[i (ky x+kyy)+pt] (23)

Where k= /kx 2+ k, Zis the wave number of them,disturbance, k,, kyare real andp is a constant which
can be complex and F(z) is some function of the vertical co-ordinate z.

Taking the perturbations of the form (23), the eqns (13) to (22) reduce to give

poP U=-ikySP+u(D 2-k ?2)U+(H/P4,)DH, (24)

poP V=-iky8P+pu(D ?-k ) v+(H/P4;) DH,(25)

poP W=-D&P+u(D ?-k 2)W +(H/P4,) DH; - gY +g agp0(26)

ikyU+ik, V+DW=0 (27)

pg- BW=K(D 2-k 2)0(28)

pY=-po W (df/dz) (29)

ikyHy +ikey Hy +DH3 =0 (30)

pH;=n(d ?-k ?)H;+HDU (31)
pH,=n(d 2-k ?)H,+HDV (32)
pHy=n(d 2%-k ?)H;+HDW (33)

Where D=% and U,V,W,H,,H;,H3,Y, 8P and H are the values of F(z) for v,v,w, hx,hy,hz, 6P and 0, respectively.

Let  and §/4 || denote the z-components of the vorticity. w =curl 6V and the current density j=(curl §H) /4
1, induced by the perturbation, so that
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_du_du = Iy Oy
Z—ax 2, and &= 5 3, (34)
Let

§=1(z) exp [i(kxx + ky y) +pt]

(= X(2) exp [i(kyx+ kyy )+pf] (35)

Then, we have from (34)

LZ=iky V- ik, Uand X=ikyH,_ ik, H:1(36)

Now, in terms of Z and X, (31)and (32) reduce to give

pX=(D ?-k %)X+ HDZ (37)

while (24) and (25) yield

pZ=(D 2-k ?)Z+(H/4.p,) DX (38)

Further, eliminating 6P from (24), (25) and (26) and using (27),(29) and (30),we obtain

p@D ?*k *)W=-gak 2g+v@D 2k 2)W+(HATp0)D ?2-k 2)DH;+ (g/po)k?Y(39)
where v= 1 /P, is the kinematic viscosity.

Hence, the eqns (28),(33), (37),(38) and (39) constitute the relevant equations of our system.
Now using following non-dimensional numbers

D’ =dD, a’=kd,/o=p D2/v, p_(1=) v/k, P_2=v/n
R’=(gap d*/kv, R_2=(gd*/ kv)(df /dz),Q=(H2d?2)/(4m povn) (40)

and dropping the primes for convenience, these eqns. reduce to
(D *a %p)eg=-(Bd 2/kW(41a)

(D 2-a 2-py0)Hs;=-(Hd/H)DW(41b)

S}

(D 2-a Z2-py0) X=-(HdM)DZ (410)
(D ?%-a 2-py0) Z=-(Hd/Ap,v)DX(41d)

(D ? - a 2) D ?% - a ?2-0 )OW+ (HdO/ 4xpo V) x D( D %2 - a 2H; =(g
ad ?/v)oa 2g+(gad *o 2Dffv )W (41e)
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Operating the eqn. (41e) by (D 2?-a 2-P,0) (D 2%-a 2-P;0) and using (41a)and (41b), We get following
differential equation of order eight in the perturbed velocity W

op@ *-a ) *-a o p)[D *-a *-0)D *-a %-p,0)-QD /W
=op Ra ?)(D *-a *<op ) W+Ra *(@ ?-a *po) (D *-a *p0)W(42)
We seek the solution of this equation satisfying certain boundary conditions which we enumerate below
Boundary conditions: Since the boundaries are free and non-conducting, followingChandrasekhar 12 ' the
relevant boundary conditions for our problem are
(W=D 2W=0
(ii) #=0
(iii) DZ=0
(iv) X=0 (43)

atz=0 and z=1

Results and Discussion
Now, we deduce some interesting results from the eqn (41) and (42) and the conditions(43).

Stationary convection and the principle of the exchange of stabilities:First, weexamine whether the
instability can set in as stationary convectionand the principle of the exchange of stabilities is valid

Supposing that the instability sets in as ordinary convection,the marginal states are characterized by ¢ =0
and eqns (41) reduce to

@D 2-a 2)P=-pd /)W

(D %-a 2)Hy=-(Hd/m)DW (44)
D %-a ?)X=-(Hd/m)DZ

(D %-a ?2)Z=-(Hd/)/4mnp,v) DX

D

C—2 "Dy w=0(44)

Solving the eqns (44) and using the boundary conditions (43), we find that W=0, g=0, U=0,V=0,H, =0,H, =
Oetc. are the only solutions. Thiscontradicts the hypothesis that the initial stationary solutions are perturbed.
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Consequently, the instability cannot set in as stationary convection and the principle of the exchange of
stabilities is not valid.

However, in the special case when Df=0, the eqn. (42), in the marginalstate, reduces to
@D ?%-a %)M ?%-a %) %2-QD ?]W=-Ra *W (45)

And , the boundary conditions W=D 2 W=0 etc. suggest that the proper solution forW for the lowest mode
is W=W_sin mz. Then, the instability sets in as stationary convection and (45) yields the characteristic
equation

R=2E Zfa iy oa ?) Pom 2Q](46)

T

which gives the Rayleigh number and shows the inhibiting effect of the magnetic field on the onset of
instability on further analysis. This agrees with Chandrasekhar’s ?result.

Frequency of oscillation at the marginal state: Now, we examine whether instability can set in as over
stability i.e. oscillations of increasing amplitude and determine the frequency of oscillations in the marginal
state which is characterized by o=(io,) where o, is real. Further, we notice that the proper solutions for
Whbelonging to the lowest mode can be taken as W=W,, sinnz.

Substituting, therefore, 6=io, and W=W, sin niz in the eqn (42) and equating real and imaginary parts, and
setting.

Ri=R/m % R,=R,/m *Q;=Q/m % a 2=m 2x(47)

We obtain

p1 *p2(1+X)oz *+[p1p2 xRy + R2)-p1 2Q1(1+%)- (1+%)

-(1+x) 2 (pr *4p1tpip2)] o2 2Ry’ x(14+x) ?=0 (48)
And

XRip1=p1(1+x) 3-0, 2(14x) [P1P+P; ?*(14P,)]
+Q1P1(1+ Y)-Ry' x(Py+Py) (49)

Now , eliminating R; from (48) and (49) and solving the resultant equation forc,,we get

0, 2=(-M+ty M 2—4LN)/2L (50)

Where

L=pip; *(1+x) (p1+1)

M=R;’ x+ Q;(1+x) p1 (p1-p2)+p:1(1+p)(1+x) * (51)
N=R,'x(1+x)2

The eqn (50) gives the required expression for the frequency of oscillation in the marginal state.
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Analysing (50) further, we notice that :When R} > 0and M > 0, theno, 2is negative. Hence the marginal
state and the over stability cannot occur in this case.

When R,">0 and M < 0, then marginal states exist and over stability occurs and o, is given by
o, 2=(M++VM' 2-4LN)/2L (52)
Provided M’ 2-4LN >0 where M'= -M

When R,’<0 and M>0, over stability may occur and than, o, will begiven by

o, ’=(-M+ M 2—4LN)/2L(53)

When R,’<0 and M<0, overstability may occur and than, o, will be given by

0, =M+ M 2—4LN)/2L (54)

Rayleigh number: Considering the situation as described above, we find that The eqn.(49) yields the
Rayleigh number in the marginal state as

1+x) 3 1+ 1 (P1+
R=m “R, =1 20—+ Q 52— Ry B2 (p, 4 p,(1 4+ py)

(1+X)

(o2 21(55)

Where o, ?2is given by (50).

Marginal state: From the analysis of (50), we conclude that marginal stateand hence the solution describing
over stability cannot occur if

R, > 0 and p; > p, (56)

For ,in such a case, L, M,N will be positive and consequently o, 2 will be negative ,contradicting the
hypothesis thato, is real.

From (40) and (47), we see that the condition (56) is equivalent to

(dt/dz) > 0 and k <n (57
In particular, when R’, =0, the condition (57) reduces to simply

k<n (58)

Which agrees with Chandrasekhar’s result 2.

Hence, in order that marginal states may exist and the over stability may occur for R},>0, we must have
p1 <p2 (59)

© 2020, I[JSREM | www.ijsrem.com Page 8
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Even when this is the case, analysis of (50) further suggests that the over stable Solutions are possible
only when

Rop, Zx+p; (1+x) 3+ Qup;  %(14x) <Qqp;pz (14x) (60)

and
[R2pz  2x+4p; (14p1) (1+x) 3+Qip1 (p1 -p2) (14+x)] 3=4pip, *Ryx(pi+1) (1+x) 3(61)

Thus, for the marginal states to exist and over stability to occur for R;> 0, the magnetic field and the wave
number should be such that

Ryp, *x , 1+p1

p1 (P2 —p)(1+X) (P2 —P1)

Q (1+x) 2 (62)

Besides that k <.

Further, we notice that, for a given Q; (the magnetic field), the over stable solutions are possible only
whenx<x * wherex ~isgiven by

p1 (14p;) (14+x %) 3+R4p, 2x *-Qip; (p2-p1) =0 (63)

In particular when R’, =0, the condition (62) simply reduces to

2y (1+4p1)
Ql > (1+X )(pz —P1 )(64)

Which agrees with a similar result obtained by Chandrasekhar 2 for a homogeneous fluid.
Similarly, when R} < 0, we observe that the marginal states exist and the overstability occurs.
Nature of non-oscillatory modes :when R} >0 and M>0, only non-oscillatory modes can exist for which 6,=0
and 0=0, (04 is real ). Hence substituting c=0,and W =W, sin niz in (42), we obtain the characteristic
equation as
Fc )=Aoc, *+Bo, 3+Co, ?+do,+E=0 (65)
Where
A=p; *py(m *+a ?)
B=pip,(m *+a ?) *4py *(A+p) (@ *+a ?) ?
C=p1(1+pz) (m * +a ?) S+4py *(m *+4a ?) P4p 2Qm (@ 4 ?)
<« ?p1pz(R+R;) (66)
D=pi(m * +a %) *+p@m *@ *+a ?) Za 2(m % 4o ?){Rpy+Ry(PL+Py)}

E=-Rya ?(m 2?+a 2) 2

© 2020, I[JSREM | www.ijsrem.com Page 9
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Now, since F (+ o) = positive and F(0) =negative, it is obvious that the equation (65) willpossess at least
one positive real root. Hence the system is unstable

Numerical Computation
Now, we discuss the effects of various parameters on the stability of our system by makingnumerical
calculations by using the variational principle. For thispurpose, we will compute the values of o for different

values of the parameters and derive the conclusions.

Following Chandrasekhar!?, let p; bea characteristic value and let the solutions corresponding to p; be
distinguished by a subscript i .Then, from the eqn (26), we get

D8P;=-po-piWi +puD 2k %) Wi+gapo®;+ (H/4m) DH 3; +(gpoW; /B) (df/dz)  (67)

Let p; be another characteristic value and the solution corresponding to it be denoted by the subscript j.
Then, multiplying (67) by W; and integrating w. r.t.zfrom z=0 to z=d, using the boundary conditions (43),
we obtain

d d
-J, 8P -DW;dz = [ p0p;-pk 2+((gpo/p;) (df/dz) W; W;dz +f0agoc Po6; W;dz -foanDWi -DW; dz -
Jy H/4z) - H3;DW; dz (68)

Now, for the characteristic valueP;,the eqns. (28) and (33) become

P]'H3i_ T]k 2H3]' +T]D 2H3]‘ +HDW]

Multiplying the first equation by 6; and the second by Hs; and then, integratingw.r.t.z from z=0 to z=d, using
the boundary condition (43), we get

[pi0i0dz+ [Tk k 20,6;dz+-[ kd8;dz= [ BW; B;dz
d H _ d 2
—fo (ZT[) DW] H3i dz=- fO (p] /41'[) H3] H3i dz —fo T]k /41T)H31H3] dz -

d
-J, n/4m) DH3; DH3; dz
Substituting these results in eqn. (68), we obtain

d d
- 8P; DW;j dz=-[, (—pi po-ik 2+(gpo/P) (df/dz) W W; dz - [ tDW DW; dz

+(gapo/B) [, pi 010, da(gapo/Bkk ) [; 00, dz(gapo/BK[, DO ;DO dz-

d, .
-J; (pj/4m) HyiHzjdz -(nk  2/4m) - [ Ha; Hajdz -(n/4m) - [, DHzj DHy; dz

© 2020, I[JSREM | www.ijsrem.com Page 10
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(69)
Similarly, from the eqn(24) and (25) from P;we get
k 28pi=-pipoDW;+n(D 2%k #DW;+(H/4m)D 2Hs;(70)

Multiplying it by DW j and integrating w.r.t.z from z=0 to z=d, we get

k 2 [08P; DW; dz=-["p; po DWDW; dz +[ (D 2~ k 2)DW,DW; dz +(#/4m)
+[' D 2Hy DW; dz(71)

Further considering the eqn. (33) for p; and multiplying it by D 2Hj; and Then integrating from z=0 to z=d
, using boundary conditions (43) and then substituting the result in (71), we obtain

d d
Jy 8P; DW; dz =-['(pipo/k ?)DW; DW; dz- f; uDWDW; dz— ['(w/k 2) D 2Wj dz -— ['(n/4nk 2)
D 2Hy;dz-(n/4m) [, DHzj DHy; dz-(/Pgdnk 2) [*DHaj DHydz  (72)

Hence, equating (69) and (72), setting 7 =jand suppressing the subscripts, we find that

» fpe [ W P +OW) *k * ] dzet( g/p) [0 (@t/dz) W ? dztp
foagapo /B)o 2dz+f0agap0 k) [k 26 2+(Dg) ?]dz=

[inlk W 242(DW) 2+(D 2W) 2/k 2)]dz+[(p/4m) [(DHs) 2/k *+H; ?] 2dzt P

Jy /4m) D *H3) */k *42(0H;) *+k *Hy *}dz (73)
Which forms a basis for the variation formulation of our problem.

To see that the eqn. (73) provides the basis for the variation formulation,We consider the effect on p,
determined in accordance with (73), of arbitrary varia-tins 6w, 66, 6H, in W, 8,H; respectively, compatible
with the boundary conditions on W, 6 and Hs.

Let
L=['p[W 2+0DW) %/k ?]dz

I, = f Py (df/d) W 2 dz

Iy =fuk 2w 242(DW) 2+(D 2W) 2/k 2]dz (74)
Iy =Jy gapo BK[DO) *+k *6 *]dz

Is = fy gapo /B)O *dz

© 2020, IJSREM | www.ijsrem.com Page 11
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Io = [ (1/4m™) [(DH3) 2/k 2+4H; 2]dz
I, = [‘(/4m) [D 2H3) 2/k 2+42(DH;) %+k 2H; %}dz

Substituting (74) in (73) and considering first order variations only, we get

g L ol -l ) R =(E B Be De 1 By 2% 4By (75)

Where

8Ly =2 [y 8W [py -(o /k 2)D 2 W]dz

81, =2 [, (df /dz) W6 W dz

8l =2[ W (k *mW -2nD *W+(k 2D 2)@D *W)jdz
8l, =2 [ gap, B)KSO[D 26-k 262)dz(76)

8ls =2 [ gapo /B) 066 dz

8lg = [y (1/4m) [~k 2D 2H38Hz+H;8H,] dz

oI, = ['(n/4m)[k 2D *Hz8Hs-2D 38Hs;+k 2H;8H;]dz
Now simplifying (75)and (76) for6W,we get

P
(h +5%5 1 s - )— f 8W [Ppo W-P5D W —-£py T -gap, °
+k 21‘[W2|'[D

2W)+——D H3-EDH3] dz(77)

4mtk 2

Hence, the coefficient of W in the above integral vanishes

Ppo 217 8. df 2 2 D ? 2
If PpOW- D W-ppo 5, 8%Po 6+k “pW-2uD W+k > (uD ‘W)
H H
+4T[k > D 3H3-EDH3=O (78)

Thus, a necessary and sufficient condition that pbe zero for first order variations6W5 ,8H3, 868, compatible
with the boundary conditions, is that W,Hs, 6 are the solutions fo the characteristic value problem. Hence, it
is possible to solve the present problem by using variation principle.

Now,we return to eqn. (73). Let the density distribution be governed by f(z)=exp(yz), where y is small.Let
the solutions forW and © be

© 2020, IJSREM | www.ijsrem.com Page 12
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W =W, sin (nnz/d) and 6=86, sin (Nnz/d)
Where 1 is an integer. Let further
I=nm/d, y=k/I, b=y/l, c=pd?/v,p;=Vv/k
p2=v/n, R=gaBd */kv,Q=H *d ?/AmpowmandR;=gd 3*/v ?(79)
Substituting above in the eqn. (73) and simplifying, we obtain following fourth degree equation in o

Ac ?+Bo 2+Co 2+Do+E=0 (80)
where

A=pip2(1+y ) (b *+4)
B=1+p2+pip2)(1+y 2)( *+4m *m 2

C=A+p+p)(1+y 2)(® ?+4n *m *-4R;e P"™-1)y S3pip,+Qpin *m 2 2+4)(I+y ?)
-Ry *p, (b *+4)

D=n °mw S (I+y 2) *® 2+4)-4Rz(e ""-1)y 2(1+y *)n *n 2P, + P,)
+Q(1+y %) *n *m *® 2%+4)-Ry ?*(1+y %) ?*+4n *m 2
E=—4Rs;e "™-1)y 2(1+y ?) ?n ?mn ? (81)

Now, considering (80) for n=1 and making numerical calculations, we haveobtained the roots of (80) for
different values of @,y and b as shown in the following tables:

P, =247%x10 ~2P,=1.46x10 ~7R=10 R;=1
TABLE 1 TABLE 2 TABLE 3
y=1, b=01 Q=10 °b=0.1y=1,0=10 ©

Q o v o b o
0 9.48x10 3 001 3.69x10 13 1.0 1.77 x10 ~5
10 2.65x10 3 01 3.69x10 11 2.0 2.67 x10 ~*
10 3 3.55x10 ~* 0.1 3.69x10 ~° 2.5 1.002x10 3
10 * 3.66x10 5 1.0 3.69x10 ~7 3.0 3.80x10 3
10 5 3.69x10 ~° 3.5 146 x10 2
10 °© 3.69x10 ~7 4.0 571 x10 2

It is seen, from Table 1, that o decreases as  increases, showing that the magnetic field has a stabilizing
effect on the system. Further, the Table 2 reveals that cincreases asy increases and, therefore, the
perturbations of high wave number have adestabilizing value of b helps to destabilize the system.
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We conclude that the principle of the exchange of stabilities is not valid for our system and that frequency of
oscillations in the marginal state are given by (50) and The Rayleigh number by (55). It is seen that for
(dt/dz)>0 and K <7, the marginal states do not exist and we have only non-oscillatory modes which make
the system unstable. However, the marginal states exist and over stability occurs when K >n, and the
magnetic field and the wave number are such that they satisfy (62). Further, analyzing the problem by
variational procedure and making the numerical computation, we observe that the magnetic field has a
stabilizing influence, while the wave Number and heterogeneity have a destabilizing effect on the system,
when density varies exponentially.

The various results obtained may find applications in many geophysical and terrestrial conditions,
atmospheric studies, oceanography and related fields.
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