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Abstract 
 
The thermal instability of an electrically conducting, viscous, incompressible and heterogeneous fluid layer 
with free boundaries in the presence of a transverse magnetic field under Boussinesqapproximation has 
been studied.  A discussion of the existence of the marginal states, over stability and the validity of the 
principle of the exchange of stabilities,has been made; and the frequency of oscillations and the Rayleigh 
number have been determined as function of the magnetic field and the densitydistribution, which give the 
effects of the magnetic field of the heterogeneity on the onset of instability in various cases of interest.  
Further, the problem has been solvedby using variational principle and the effects of various parameters 
have been discussed through numerical computations in the case when the density varies exponentially. 
 

Introduction 
 
The magnetohydrodynamical equations of a conducting fluid allow some patterns of flow which can be 
realized only for certain range of values of the parameters characterizing them due to their inherent 
instability to sustain themselves against small perturbations. The problem of onset of instability in a 
horizontal fluid layer, heated from below and first discussed by Benard1in 1900, gives somestriking features 
of instability and is known as Benard problem. 
 
 Rayleigh2 laid down the theoretical foundations for the study of the thermal Instability of such fluid layer 
and showed that the Rayleigh numbers R= g α β d4/ KvDecides the stability of the configuration, where g, α, β,K,v andd acceleration due to gravity, the coefficient of the volume expansion, the adverse temperature 
gradient, the thermal diffusivity, the kinematic viscosity and the thickness of the Medium, respectively. He 
showed that the instability sets in when R exceeds certain Critical valueRcand that when R just exceedsRc, 
stationary pattern of motioncome to prevail. The theory was further developed by Jeffreys3, Low4, Pellew 
and Southwell5 and several others. Later on, the stability of the layer of viscous fluid of Variable density was 
discussed by Hide6, Chandrasekhar7, Drazin8 and others. 
 
 The inhibiting effect of the magnetic field on the stability of a homogeneous fluid layer heated from below 
has been discussed by Thompson9, chandrasekhar10and Nakagawa11, Chandrrasekhar10, in particular, has 
analyzed the thermal instabilityof a homogeneous fluid layer in the presence of a magnetic field, in detail. 
 
As in many situations, the fluid may not be homogeneous and moreover,the Magnetic field may be prevalent, 
it is interesting to study the effect of the magneticfield on the stability of heterogeneous fluid layer heated 
from below.The problem may have applications in atmospheric studies, oceanography, geology, and various 
other fields. 
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In the present paper, we therefore, study the stability of a viscous, incomprehensible heterogeneous and 
conducting fluid layer with free boundaries in the presence of a magnetic field acting in the transverse 
direction. The density of the fluid is taken as a function of the vertical co-ordinate and the surroundings are 
assumed to be non-conducting. We investigate the stability in the Bousssineq approximation and discuss the 
existence of the marginal states and the over stability; and the validity of the principle of the exchange of 
stabilities. We also obtain the frequency of oscillations and Rayleigh number in terms of the magnetic field, 
density etc., and thus discuss the effect of the magnetic field and the heterogeneity on the stability of the 
system. We further solve the problem by using the variational principle and discuss the effect of various 
parameters through numerical computation when the density varies exponentially. 
 

The Problem 
 
Consider electrically conducting, viscous and incompressible fluid layers confined between two boundaries z 
= 0and z= d and let the boundaries be free. Let the density of the fluid, apart from its variation due to the 
temperature, be ρ0f(z). Where ρ0 is the density a the lower boundaries (z = 0), so that f(0)=1 and f(z) is a 
monotonic function of the vertical co-ordinate z. 

 
Let the lower and upper boundaries be maintained at uniform temperatures𝑇0and𝑇1  respectively with 𝑇0>𝑇1. Further let a uniform magnetic fieldH= (0, 0, H) Pervade the whole medium in the transverse 
direction to the layer. 
 
Basic equations: The basic equations governing our system are ρ0[ ∂V∂t + (V.∇)v] = grad [P+

𝐻28∏] + π𝛻2V +
14π(H. ∇)H    (1) 

 
div V=0                                    (2) 

 ∂T∂t  +(V.∇ ) T=
𝐾𝑃0𝐶𝑈 𝛻2 T - 

p𝑃0𝐶𝑈  div V+
∅𝑃0𝐶0  (3) 

 ∂ρ∂t+ (V.∇) p=0                                               (4) 

div H=0   (5) 
 ∂H∂t  = curl (V × H) + η𝛻8 H      (6) 
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 ρ =ρ0[f (Z) +α (𝑇0 - T)]   (7) 
 
Where V,p,ρ0,T,H denote velocity, hydrostatic pressure, density, temperature and applied magnetic field: ∅,𝑐𝑈denote dissipation function, specific heat of the fluid at constant volume; and μ, α and k denote the 
coefficient of viscosity ,coefficient of Volume expansion and thermal conductivity of the medium, 
respectively. 
 
Let the initial state be characterized by 
 

V=0   (8) 
 

T= 𝑇0- β𝑧 , β= (𝑇0 − 𝑇1) /d             (9) 
 
P = p+ 𝐻2|8∏= - ∫gρdz (10) 

 
H= (0, 0, H)      (11) 

 
where ρ0is the density at the lower boundary z=0 and β is the adverse temperaturegradient.  
Perturbation equations: Let the initial state be slightly perturbed such that 
 V → 0 +δV, T → T+ ∅ , P → P + δP 

 
 

H→H+ δH, ρ →ρ0[f(z)+ α(𝑇0 -T- ∅)] +𝑠𝑝   (12) 

 
Then, the liberalized perturbation equations for our system in the Boussinesqapproximations are 
 ρ0

∂u∂𝑡  = 
∂∂𝑡δP+ μ 𝛻2 μ + H4μ ∂hx∂𝑧    (13) 

 ρ0
∂υ∂𝑡 = 

∂∂𝑦δP + μ 𝛻2 υ + H4μ ∂hy∂z    (14) ρ0
∂𝑤∂𝑡 = 

∂∂z δP + μ 𝛻2 w +
H4μ ∂hz∂𝑧  - g(δρ – αρ0∅) (15) 

 ∂μ∂𝑥 +
∂u∂𝑦+

∂w∂𝑧  =0                                                                (16) 

 ∂h𝑥∂𝑥 + 
∂hμ∂𝑦 +

∂h𝑧∂𝑧 =0                                     (17) 

 ∂δ𝑝∂𝑡 =-ρ0 𝑤 d𝑓d𝑧    (18) 

 ∂∅∂𝑡–βw= K  𝛻2ø   (19) 

 ∂hx∂𝑡  = η𝛻2hx+H
𝜕𝑢𝜕𝑧   (20) 
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 ∂hy∂𝑡  = η𝛻2hy+H
∂v∂z(21) 

 ∂hz∂𝑡  = η𝛻2hz+H
∂w∂𝑧 (22) 

 
where, δV =( μ , υ, w). ø, δP,δH = (h𝑥,h𝑦,h𝑧) and δprespectively denote small perturbations in velocity, 

temperature, pressure, magnetic field and K=k/ρ0 cυthe thermal diffusivity of the medium. 
 
Analysis into normal modes:Now, we analyze an arbitrary disturbance into complete set of normal modes 
and examine the stability of each of these modes, separately.  For the present problem, the analysis can be 
made in terms of two-dimensional periodic waves of assigned wave numbers. Hence, we assume that all the 
perturbations have the space-time dependence as  
 
F(z) exp[i (kx  x+ ky y)+pt]                                                                 (23) 

 

Where k=√𝑘𝑥 2 + 𝑘𝑦 2is the wave number of them,disturbance, 𝑘𝑥 , 𝑘𝑦are real andp is a constant which 

can be complex and F(z) is some function of the vertical co-ordinate z. 
 
Taking the perturbations of the form (23), the eqns (13) to (22) reduce to give  
 ρ0P U= - i kXδP + μ(D 2 – k 2) U+(H/P4π) DH1                           (24) 
 ρ0P v= - ikyδP + μ(D 2 – k 2) v+(H/P4π) DH2(25) 

 ρ0P w=- D δP + μ(D 2 – k 2) W +( H/P4π) DH3 – gY +g αøρ0(26) 
 
i kX U + i ky V+ DW = 0      (27) 

 pø- βW= K(D 2 -k 2) θ(28) 
 
p Y= -ρ0 W (df/dz)   (29) 
 
i𝑘𝑋𝐻1+i𝑘𝑌𝐻2+D𝐻3=0                                             (30) 
 
p𝐻1= η(𝑑 2- 𝑘 2) 𝐻1+ HDU                                    (31) 
 
p𝐻2= η(𝑑 2- 𝑘 2) 𝐻2+ HDV                                        (32) 
 
p𝐻3= η(𝑑 2- 𝑘 2) 𝐻3+ HDW                                      (33) 
 

Where D=
ddz and U,V,W,𝐻1,𝐻2,𝐻3,Y, δP and H are the values of F(z) for  υ,v,w, ℎ𝑥,ℎ𝑦,ℎ𝑧, δP and θ, respectively. 

 Let ζ and ξ/4 ∏ denote the z-components of the vorticity. w =curl δV and the current density  j=(curl δH) /4 ∏, induced by the perturbation, so that  

http://www.ijsrem.com/


              International Journal of Scientific Research in Engineering and Management (IJSREM) 

                Volume: 04 Issue: 06 | June -2020                                                                                                          ISSN: 2582-3930                                 

 

© 2020, IJSREM      | www.ijsrem.com Page 5 

 

ζ =∂u∂𝑥 - 
∂u∂𝑦 and  ξ=  ∂h𝑦∂𝑥  -   

∂h𝑥∂𝑦  .   (34) 

Let 
 ξ = Z(z) exp [i(𝑘𝑥𝑥 + 𝑘𝑦 𝑦) +pt] 

 ζ= X(z) exp [i(𝑘𝑥𝑥+ 𝑘𝑦y )+pt] (35) 

 
Then, we have from (34) 
 
Z=i𝑘𝑋V - i𝑘𝑦 U and X= i𝑘𝑋H2− 𝑖𝑘𝑦H1(36) 

 
Now, in terms of Z and X, (31)and (32) reduce to give 
 

pX=( 𝐷 2-𝑘 2)X + HDZ                 (37) 
 
while (24) and (25) yield 
 
pZ=(D 2- k 2)Z +(H/4πρ0) DX                (38) 
 Further, eliminating  δP from (24), (25) and (26) and using (27),(29) and (30),we obtain  
 
p(𝐷 2-𝑘 2) W = - ga𝑘 2 ø+ v(𝐷 2-𝑘 2) W+(H/4π ρ0) (𝐷 2-𝑘 2) D𝐻3 + (g/ρ0)𝑘2Y(39) 
 
where  ν= μ /𝑃0 is the kinematic viscosity. 
 
Hence, the eqns (28),(33), (37),(38) and (39) constitute the relevant equations of our system. 
 
Now using following non-dimensional numbers 
 
                       D’ =dD, α’=kd,/σ=p D2/ν, p_(1= )  ν/k, P_2= ν/η 
                       R’=(gαβ d4/kν, R_2=(gd4/ kν)(df /dz),Q=(H2d2)/(4π ρ0νη) (40) 
 
and dropping the primes for convenience, these eqns. reduce to  
 
(𝐷 2-α 2-𝑝1) ø=- (β 𝑑 2/k)W(41a) 
 
(𝐷 2- α 2-𝑝2𝜎)𝐻3=-(Hd/η)DW(41b) 
 
(𝐷 2-α 2-𝑝2𝜎) X =-(Hd/η)DZ                                                      (41C)   
 
(𝐷 2-α 2-𝑝2𝜎) Z =-(Hd/4πρ0ν)DX(41d) 
 
( 𝐷 2 -  α 2 )(  𝐷 2 -  α 2 − 0 )0W+ (Hd0/ 4πρ0 ν) x D( 𝐷 2 -  α 2𝐻3  =(g α𝑑 2/ν).σα 2ø+(gα𝑑 4 α 2Df/ν 2)W                  (41e) 
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Operating the eqn. (41e) by ( 𝐷 2- α 2-𝑃1𝜎) ( 𝐷 2- α 2-𝑃1𝜎) and using (41α)and (41b), We get following 
differential equation of order eight in the perturbed velocity W 
 σ𝑝1(𝐷 2- 𝛼 2) (𝐷 2- 𝛼 2-σ   𝑝1) [(𝐷 2- 𝛼 2- σ) (𝐷 2- 𝛼 2- 𝑝2σ) -Q 𝐷 2]W 
 
=-σ 𝑝1 R𝛼 2) (𝐷 2- 𝛼 2-σ 𝑝2) W+𝑅2 𝛼 2(𝐷 2- α 2-𝑝1σ) ( 𝐷 2- α 2-𝑝2σ ) W(42) 
 
We seek the solution of this equation satisfying certain boundary conditions which we enumerate below 
 
Boundary conditions: Since the boundaries are free and non-conducting, followingChandrasekhar 12 , the 
relevant boundary conditions for our problem are 
 (i) W= 𝐷 2W =0 
 
   (ii) Ø=0 
 
                                                 (iii) DZ=0 
 
                                                  (iv) X=0   (43) 
 
at z=0 and z=1 
 

 
Results and Discussion 

 
Now, we deduce some interesting results from the eqn (41) and (42) and the conditions(43). 

 
Stationary convection and the principle of the exchange of stabilities:First, weexamine whether the 
instability can set in as stationary convectionand the principle of the exchange of stabilities is valid 

 
Supposing that the instability sets in as ordinary convection,the marginal states are characterized by σ   =0 
and eqns (41) reduce to  
 
(𝐷 2- 𝛼 2) Ø= - 𝛽𝑑 2 /k) W 
 
(𝐷 2- 𝛼 2) 𝐻3= - (Hd/η) DW   (44) 
 
(𝐷 2- 𝛼 2)X=- (Hd/η) DZ 
 
(𝐷 2- 𝛼 2) Z=-(Hd/)/4π𝑝0 ν) DX 
 

(
𝐷 2𝑔𝑑 4ν Df) W=0(44) 

 
Solving the eqns (44) and using the boundary conditions (43), we find that W=0, ø=0, U=0,V=0,𝐻1=0,𝐻2 =0etc. are the only solutions. Thiscontradicts the hypothesis that the initial stationary solutions are perturbed. 
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Consequently, the instability cannot set in as stationary convection and the principle of the exchange of 
stabilities is not valid. 
 
However, in the special case when Df=0, the eqn. (42), in the marginalstate, reduces to 

(𝐷 2- 𝛼 2) (𝐷 2- 𝛼 2) 2-QD 2] W=-R 𝛼 2W                                  (45) 
 
And , the boundary conditions W= D 2 W=0 etc. suggest that the proper solution forW for the lowest mode 
is W=W0sin πz. Then, the instability sets in as stationary convection and (45) yields the characteristic 
equation 
 

R= 
π 2+ 𝛼 2π 2  [(π 2 +  𝛼 2) 2 + π 2Q ](46) 

 
which gives the Rayleigh number and shows the inhibiting effect of the magnetic field on the onset of 

instability on further analysis. This agrees with Chandrasekhar’s 12result. 
 
Frequency of oscillation at the marginal state: Now, we examine whether instability can set in as over 
stability i.e. oscillations of increasing amplitude and determine the frequency of oscillations in the marginal 
state which is characterized by σ=(iσ2) where σ2 is real. Further, we notice that the proper solutions for 
Wbelonging to the lowest mode can be taken as W= 𝑊0 sin πz. 
 Substituting, therefore, σ=𝑖σ2  and W=𝑊0 sin πz in the eqn (42) and equating real and imaginary parts, and 
setting. 
 𝑅1= R/ π 4, 𝑅2‘ =𝑅2/ π 4𝑄1= 𝑄/π 2, α 2= π 2x(47) 
 
We obtain  
 𝑝1 2𝑝2(1+χ)σ2 4+[𝑝1𝑝2 χ(𝑅1 + 𝑅2′)- 𝑝1 2𝑄1(1+ x)- (1+ x) 
 
-(1+x) 2 (𝑝1 2+𝑝1+𝑝1𝑝2)] σ2 2-𝑅2’ x(1+x) 2=0                                                   (48) 
 
And 
 x𝑅1𝑝1=𝑝1((1+x) 3-σ2 2(1+x) [𝑃1𝑃2+𝑃1 2(1+𝑃2)] 
+𝑄1𝑃1(1+ χ)-𝑅2’ x(𝑃1+𝑃2)                                   (49) 
 
Now , eliminating 𝑅1 from (48) and (49) and solving the resultant equation forσ2,we get 
 σ2 2=(-M±√ 𝑀 2 − 4𝐿𝑁)/2𝐿 (50) 

Where  
L= p1p2 2(1+ x) (p1 + 1) 
 
M=R2’ x+ Q1(1+x) p1(p1-p2)+p1(1+p1)(1+x) 3   (51) 
 
                                      N= R2’x(1+x)2 

 
The eqn (50) gives the required expression for the frequency of oscillation in the marginal state. 
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Analysing (50) further, we notice that :When   R2′ > 0 𝑎𝑛𝑑 𝑀 > 0 , thenσ2 2is negative. Hence the marginal 
state and the over stability cannot occur in this case. 
 
When R2’>0 𝑎𝑛𝑑 𝑀 < 0, then marginal states exist and over stability occurs and σ2 is given by 
 σ2 2=(M’+ √M’ 2- 4LN)/2L                                            (52) 
 

Provided M’ 2-4LN ≥0 where M’= -M 
 
When R2’<0 and M>0, over stability may occur and than, σ2 will begiven by   
 σ2 2= (-M +√ 𝑀 2 − 4𝐿𝑁)/2𝐿(53) 

 
When R2’<0 and M<0, overstability may occur and than, σ2 will be given by   
 σ2 2= (M +√ 𝑀′ 2 − 4𝐿𝑁)/ 2𝐿  (54)   

 
Rayleigh number: Considering the situation as described above, we find that The eqn.(49) yields the 
Rayleigh number in the marginal state as 
 

R=  π 4R2  =π 4[
(1+𝑥) 3𝑥  + Q1 (1+𝑥)𝑋 − R2′ (p1+𝑝2)p1 - {p1 + p2(1 + p2)} 

(
(1+𝑋)𝑋 )σ2 2](55) 

 

Where  σ2 2 is given by (50). 
 
Marginal state: From the analysis of (50), we conclude that marginal stateand hence the solution describing 
over stability cannot occur if 
 R2′ > 0 𝑎𝑛𝑑 p1 > p2  (56) 
 

For ,in such a case,L,M,N will be positive and consequently σ2 2 will be negative ,contradicting the 
hypothesis that σ2 is real. 
 
From (40) and (47), we see that the condition (56) is equivalent to 
 
                                           (df/dz) > 0 and k <η                                       (57 
In particular, when R2′ =0, the condition (57) reduces to simply 
 
k <η                                                    (58) 
 

Which agrees with Chandrasekhar’s result 12. 
 
Hence, in order that marginal states may exist and the over stability may occur for R2′ >0, we must have p1 <p2 (59) 
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Even when this is the case, analysis of (50) further suggests that the over stable Solutions are possible  
only when 
 R2′ p2 2 x +p1 (1+x) 3+ Q1p1 2(1+x) <Q1p1p2 (1+x)                   (60) 
 

and  
[R2′ p2 2 x + p1 (1+p1) (1+x) 3+Q1p1 (p1 -p2) (1+x)] 3≥ 4p1p2 2R2′  x(p1+1) (1+x) 3(61) 

 
Thus, for the marginal states to exist and over stability to occur for R2′ > 0, the magnetic field and the wave 
number should be such that 
 Q1>

R2 ′ p2 2𝑥p1 (p2 −p1)(1+x)   + 1+p1 (p2 −p1 )  (1+x) 2 (62) 

 Besides that k < η. 
 
        Further, we notice that, for a given Q1 (the magnetic field), the over stable solutions are possible only 
when x < x ∗, where x ∗ is given by 
 p1 (1+p1 ) (1+x ∗) 3 +R2′ p2 2 x ∗- Q1 p1  (p2 -p1 ) = 0                                                  (63) 
 
In particular when R2′ =0, the condition (62) simply reduces to 
 Q1 > (1+x 2)

(1+p1 )(p2 −p1 )(64) 

Which agrees with a similar result obtained by Chandrasekhar 12 for a homogeneous fluid.  
 
Similarly, when  𝑅2′ < 0, we observe that the marginal states exist and the overstability occurs. 
 
Nature of non-oscillatory modes :when 𝑅2′ >0 and M>0, only non-oscillatory modes can exist for which σ2=0 
and σ=σ1 (σ1 is real ). Hence substituting σ=σ1and W = 𝑊0 sin πz in (42), we obtain the characteristic 
equation as  
 
F(σ 1) ≡ A σ1 4+Bσ1 3+C σ1 2+ d σ1+E = 0                            (65) 
Where  
A=p1 2p2(π 2 + α 2) 
 
  B=p1p2(π 2 + α 2) 2+p1 2 (1+p2) (π 2 + α 2) 2 
 
C=p1(1+p2) (π 2 + α 2) 3+p1 2(π 2 + α 2) 3+p1 2 Q π 2 (π 2 + α 2) 
 
-α 2p1p2(R+𝑅2)                                                                    (66) 
 
D=p1(π 2  + α 2) 4+ p1Q π 2(π 2 +α 2) 2-α 2( π 2 +α 2) {Rp1+R2(P1+P2)} 
 
   E=- R2α 2(π 2 +α 2) 2  
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Now, since F ( + ∞) = positive and  F(0) =negative, it is obvious that the equation (65) willpossess at least 
one positive real root. Hence the system is unstable 
. 

Numerical Computation 
 
Now, we discuss the effects of various parameters on the stability of our system by makingnumerical 
calculations by using the variational principle.  For thispurpose, we will compute the values of σ for different 
values of the parameters and derive the conclusions. 
 
Following Chandrasekhar12, let p i bea characteristic value and let the solutions corresponding to p i be 
distinguished by a subscript i .Then, from the eqn (26), we get  
 

DδP i=- ρ0 - piWI +μ D 2-k 2) W i+gαρ0θ j+ (H/4π) DH 3i +(gρ0Wi /Pi) (df/dz)      (67) 

 
Let pj be another characteristic value and the solution corresponding to it be denoted by the subscript j. 

Then, multiplying (67) by W j and integrating w. r.t.zfrom z=0 to z=d, using the boundary conditions (43), 

we obtain  
 

-∫ δPid0  - DW j dz = ∫ ρ0d0 pi-μk 2+( (g p 0/p i) (df/dz) W i W jdz +∫ gαα0 P 0θ j W j dz -∫ πDWiα0  - DW j dz  -∫ H/4πα0 ) - H 3 iDW j dz                                  (68) 

 
 
Now, for the characteristic valueP j,the eqns. (28) and (33) become  

 P jθ j-βW j = K(D 2-k 2)θ j 
 P jH3i =− ηk 2H3j  + ηD 2H3j  +HDW j 
 
Multiplying the first equation by θi and the second by H3i and then, integratingw.r.t.z from z=0 to z=d, using 
the boundary condition (43), we get 
 ∫ p i d0 θ iθjdz+ ∫ k d0 k 2θ i θj dz + -∫ k dd0 θ j dz = ∫ βW j d0 θidz 

 

-∫ (H4d0 π) DW j H3i dz=- ∫ (pj  d0 /4π) H3j  H3i  dz –∫ ηk 2d0 /4π)H3iH3j dz –  
 

-∫ η/4d0 π) DH3j  DH3i  dz 

Substituting these results in eqn. (68), we obtain  
 

    -∫ δP i d0 DW j  dz= -∫ (− p i d0 p 0 -μk 2+(gp 0/Pi) (df/dz) W ξ  Wj  dz  -∫ πDW ξ  α0 DW j  dz 

 +(gαp0/β) ∫ pj d0 θ i θ j dz(gαp0/β)kk 2 ) ∫ θ i θ j d0 dz(gαp0/β)k∫ Dθ i Dθ j α0 dz-  

 

-∫ (pj/4πd0 ) H3iH3j dz –( ηk 2/4π)  -∫ H3iα0 H3j dz –( η/4π)  -∫ DH3j  α0 DH3i  dz 
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(69) 

 
Similarly, from the eqn(24) and (25) from P3we get  
 k 2δ p i = - p i p 0 DW  i + π(D 2-k 2)DW  i+(H/4π) D 2H3i(70) 
 
Multiplying it by DW  j and integrating w.r.t.z from z=0 to z=d, we get  

 k 2 ∫ δP i d0 DW j  dz=-∫ p i α0 p 0 DWiDW j  dz +∫ (D 2 −  k 2d0 )DWiDW j  dz +(H/4π) 

+∫  D 2α0 H3i  DW j  dz(71) 

 

Further considering the eqn. (33) for pj and multiplying it by D 2H3 i and Then integrating from z=0 to z=d 
, using boundary conditions (43) and then substituting the result in (71), we obtain 
 ∫ δP i d0 DW j  dz =-∫ (α0 p i p 0/ k 2)DW i  DW j  dz- ∫ μDWiDW j  dzd0 − ∫ (μ/k 2)α0  D 2Wj   dz -− ∫ (η/α0 4πk 2) D 2H3 i dz-(η/4π) ∫ DH3j  α0 DH3i  dz –(/Pξ4πk 2) ∫ DH3j  α0 DH3i  dz         (72) 

 
Hence, equating (69) and (72), setting  i = j and suppressing the subscripts, we find that 
 

-p  ∫ 𝑝0  𝛼0 [  𝑊 2  +(DW) 2/ 𝑘 2 ] dz+( g/p)     ∫ 𝑝0  𝛼0 (df/dz) 𝑊 2  dz+p ∫ g𝛼0 𝛼𝑝0  /β)ø 2dz+∫ g𝛼0 𝛼𝑝0  kβ)  [k 2ø 2+(Dø) 2] dz= ∫ π[𝑑0  k 2W 2 +2(DW) 2 +(  𝐷 2  W) 2 /  𝑘 2 )]dz+ ∫ (p/4π) 𝛼0  [( 𝐷𝐻3  ) 2 /  k 2 + H3 2 ] 2  dz+ P  ∫ (η/4π)𝛼0  [𝐷 2H3) 2/ k 2+2(DH3 ) 2+ k 2H3 2} dz   (73) 

 
Which forms a basis for the variation formulation of our problem. 
 
To see that the eqn. (73) provides the basis for the variation formulation,We consider the effect on p, 
determined in accordance with (73), of arbitrary varia-tins δw , δθ, θH2 in W, θ,H3 respectively, compatible 
with the boundary conditions on W, θ and H3. 
 
         Let  
 𝐼1  = ∫ 𝑝0  𝛼0 [𝑊 2+(DW) 2/ k 2] dz 

 𝐼2   = ∫ 𝑃0  𝛼0 (df/dz) 𝑊 2 dz 

 𝐼3  =∫ μ𝛼0 [k 2 𝑊 2 +2(DW) 2+( D 2W) 2/ k 2] dz                                                (74) 

 𝐼4 = ∫ g𝛼0 𝛼𝑝0  /β(k [(D θ) 2+ k 2 θ 2] dz 

 𝐼5 = ∫ g𝛼0 𝛼𝑝0  /β) θ 2 dz 
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𝐼6  = ∫ (1/4𝛼0 π) [(D H3) 2/ k 2+H3 2] dz 

 𝐼7 = ∫ (η/4π)𝛼0  [𝐷 2H3) 2/ k 2+2(DH3 ) 2+ k 2H3 2} dz  

 
Substituting (74) in (73) and considering first order variations only, we get 
 

-(𝐼1  + gp 2  𝐼2   -𝐼5   -𝐼6   ) 
δp2  =( 

pδ𝐼1  2  -
gp δ𝐼2  2  -

δ𝐼5  2 - -
δ𝐼 4 2 + δ𝐼32 + pδ𝐼6 2  +

δ𝐼 7 2 )  (75) 

 
Where  
 𝛿𝐼1  =2 ∫ δ𝑊𝑑0  [𝑝0  -(𝑝0  / 𝑘 2) 𝐷 2 W] dz 

 𝛿𝐼2  =2 ∫ (𝑑𝑓/𝑑𝑧)𝑑0 Wδ W dz 

 𝛿𝐼3  =2 ∫ δ𝑊𝑑0  (𝑘 2π𝑊 -2 π 𝐷 2W+( 𝑘 2 𝐷 2)(μ𝐷 2W)] dz 

 𝛿𝐼4  = 2 ∫ g𝑑0 𝛼𝑝0  /β) K δθ [𝐷 2θ-k 2θ2)dz(76) 

 𝛿𝐼5  = 2 ∫ g𝛼0 𝛼𝑝0  /β) θδθ dz 

 𝛿𝐼6  = ∫ (1/4𝛼0 π) [−𝑘 2𝐷 2H3δH3+H3δH3] dz 

 𝛿𝐼7 = ∫ (η/4π)𝛼0 [𝑘 2𝐷 4H3δH3 -2𝐷 3δH3+𝑘 2H3δH3] dz 

 
Now simplifying (75)and (76) forδ𝑊,we get 
 

-(𝐼1  + gp 2  𝐼2   -𝐼5   -𝐼6   )δp2 =∫ δ𝑊𝑑0  [𝑃𝑝0 𝑊-
𝑃𝑝0k 2 𝐷 2𝑊 − -gp 𝑝0  dfdz -g𝛼𝑝0  θ 

+ 𝑘 2π𝑊2π𝐷 2𝑊+
𝐷 2𝑘 2(π𝐷 2𝑊)+

H4πk 2 𝐷 3H3- 
H4π DH3] dz(77) 

 
Hence, the coefficient of δ𝑊 in the above integral vanishes 
 

If         𝑃𝑝0𝑊-
𝑃𝑝0k 2  𝐷 2𝑊-

gp 𝑝0  dfdz- g𝛼𝑝0   θ + 𝑘 2μ𝑊-2μ𝐷 2𝑊+
𝐷 2𝑘 2 (μ𝐷 2𝑊) 

 

+
H4 πk 2  𝐷 3H3-

H4 π DH3=0   (78) 

Thus, a necessary and sufficient condition that pbe zero for first order variationsδ𝑊3 ,δ𝐻3, δθ, compatible 
with the boundary conditions, is that 𝑊,𝐻3, θ are the solutions fo the characteristic value problem. Hence, it 
is possible to solve the present problem by using variation principle. 
 
Now,we return to eqn. (73). Let the density distribution be governed by f(z)=exp(yz), where y is small.Let 
the solutions for 𝑊and θ be 
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𝑊=𝑊0 sin (ηπz/d) and θ=θ0 sin (ηπz/d) 
 Where η is an integer. Let further  
 

                                          l = ηπ/d, y=k/l , b=y/l,  σ= 𝑝𝑑 2/ ν, 𝑝1= ν/k 
 𝑝2= ν/η, R=gαβ𝑑 4/kν, Q= H 2 d 2/4πp0νη and 𝑅3= gd 3/ ν 2(79) 
 
Substituting above in the eqn. (73) and simplifying, we obtain following fourth degree equation in σ 
 Aσ 2 + Bσ 2+Cσ 2+Dσ+E=0                                            (80) 
where  
 
A=𝑝1𝑝2(1+ 𝑦 2) (𝑏 2+4) 
 
B =(𝑝1 + 𝑝2+ 𝑝1𝑝2)( 1+ 𝑦 2) (𝑏 2+4)η 2 π 2 
 
C =(1 + 𝑝1 + 𝑝2)( 1+ 𝑦 2) (𝑏 2+4)n 4 π 4 - 4𝑅3(e bηπ-1) 𝑦 3𝑝1𝑝2+Q 𝑝1n 2π 2(𝑏 2+4)(1+𝑦 2) 
- R𝑦 2𝑝2 (𝑏 2+4) 
 
D= n 6π 6 (1+𝑦 2) 4(𝑏 2+4 )- 4𝑅3(e bηπ-1) 𝑦 2(1+𝑦 2)n 2π 2(𝑃1 +  𝑃2) 
 
+Q(1+𝑦 2) 2n 4π 4(𝑏 2+4) - R𝑦 2(1+𝑦 2) (𝑏 2+4)n 2π 2 
 
E=− 4𝑅3 e bηπ-1)𝑦 2(1+𝑦 2) 2n 2π 2                                                                              (81) 
 
Now, considering (80) for n=1 and making numerical calculations, we haveobtained the roots of (80) for 
different values of Q,y and b as shown in the following tables: 
 𝑃1=2.47 × 10 −2𝑃2=1.46 × 10 −7R=10  𝑅3=1 
TABLE 1  TABLE 2                                                    TABLE 3 
y=1,            b= 0.1       Q=10 6b=0.1y=1,Q=10 6 
 

Q σ  y σ  b σ 
0 
10 10 3 10 4 10 5 10 6 

9.48×10 −3 

2.65×10 −3 
3.55×10 −4 

3.66×10 −5 
3.69×10 −6 
3.69×10 −7 

 .001 
.01 
0.1 
1.0 

 

3.69×10 −13 

3.69×10 −11 
3.69×10 −9 
3.69×10 −7 
 
 

 1.0 
2.0 
2.5 
3.0 
3.5 
4.0 

1.77 ×10 −5 
2.67  ×10 −4 
1.002×10 −3 

3.80×10 −3 
1.46   ×10 −2 

5.71   ×10 −2 
 
 
It is seen, from Table 1, that σ decreases as Q increases, showing that the magnetic field has a stabilizing 
effect on the system. Further, the Table 2 reveals that σincreases as 𝑦 increases and, therefore, the 
perturbations of high wave number have adestabilizing value of 𝑏 helps to destabilize the system. 
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We conclude that the principle of the exchange of stabilities is not valid for our system and that frequency of 
oscillations in the marginal state are given by (50) and The Rayleigh number by (55). It is seen that for 
(df/dz)>0 and K < η, the marginal states do not exist and we have only non-oscillatory modes which make 
the system unstable. However, the marginal states exist and over stability occurs when K >η, and the 
magnetic field and the wave number are such that they satisfy (62). Further, analyzing the problem by 
variational procedure and making the numerical computation, we observe that the magnetic field has a 
stabilizing influence, while the wave Number and heterogeneity have a destabilizing effect on the system, 
when density varies exponentially. 
 
        The various results obtained may find applications in many geophysical and terrestrial conditions, 
atmospheric studies, oceanography and related fields. 
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